

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Theory of elasticity, plasticity and	rheology		
Course			
Field of study	Year/Semester		
Civil Engineering		1/1	
Area of study (specialization)	Profile of study general academic Course offered in Polish		
Construction Engineering and Ma			
Level of study			
Second-cycle studies			
Form of study		Requirements	
part-time		compulsory	
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
18	0	0	
Tutorials	Projects/seminars		
18	0		
Number of credit points			
3			
Lecturers			
Responsible for the course/lectur	urer: Responsible for the course/lecturer:		
dr inż. Maciej Przychodzki			
email: maciej.przychodzki@put.p	oznan.pl		
tel. 665-2697			
Faculty of Civil and Transport Eng	ineering		

ul. Piotrowo 5 60-965 Poznań

Prerequisites

Knowledge: The student has basic knowledge of mathematics, theoretical mechanics, strength of materials, and structural mechanics, such as covered in the Civil/Structural Engineering Studies or other similar types of studies that finished with a Bachelor of Science degree.

Skills: The student is capable of formulating mechanical problems in mathematical terms and of solving algebraic and differential equations, which appear in typical problems of theoretical mechanics, strength of materials and structural mechanics.

Social competencies: The student is aware of the necessity of lifelong learning in order to expand und update his/her knowledge and skills.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective

Acquaintance with basic knowledge of the mechanics of materials and structures and of constitutive modelling of materials as well as acquisition of skills, all of which are essential for solving typical problems in the stress-strength analysis of structural elements.

Course-related learning outcomes

Knowledge

1. The student knows the notion and physical interpretation of stress and strain tensors and their use in stress-strength analysis of materials.

2. The student knowledge of constitutive laws in elasticity, viscoelasticity and plasticity of materials.

3. The student knows the specifics and static analysis methods of two-dimensional problems (plain state of stress or strain, disks).

4. The student knows the specifics and static analysis methods of thin plates.

5. The student understands the specifics of elasto-plastic material behaviour and knows methods of ultimate load-carrying capacity analysis of bar structures.

Skills

1. The student is capable of examining the differential equilibrium equations of a material continuum.

2. The student is capable of calculating the components of strain and stress tensors, and the principle values and directions of the tensor.

3. The student is capable of calculating the components of strain and stress tensors by the generalized Hooke'a law.

4. The student is capable of solving the plane stress or plain strain problems.

5. The student is capable of calculating the internal forces and displacements in elastic plates.

6. The student is capable of predicting ultimate load-bearing capacity of beams.

Social competences

1. The student is aware of the responsibility for the correctness of conducted analyses and of the need of verifying adopted assumptions and obtained results.

2. The student sees the necessity of systematic expanding und updating his/her knowledge and skills.

3. The student understands the need of teamwork in solving theoretical and practical problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lectures:

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

The 90-minute final written test at the time specified at the beginning of the semester, including two parts. Part 1 is to test the knowledge and consists in answering 4 questions.

Part 2 is to test your skills and consists in solving 2 accounting problems. In doubtful cases, the test is extended by the oral part. Answers and solutions to the tasks are rated on a scale of 2.0-5.0 each. The final grade is the weighted average of partial grades. The weights correspond to the degree of difficulty of individual questions and tasks.

Tutorials:

The 90-minute written test at the end of the semester. The test consists in solving 3-4 accounting problems. Task solutions are rated on a scale of 2.0-5.0 each. The final grade is the weighted average of partial grades. The weights correspond to the difficulty of the individual tasks. The final grade for the tutorials may be increased in the event of significant student activity during classes.

Programme content

Elements of vector and tensor calculus. State of stress - tensor of stress. Principle values and principle directions of tensor. State of strain - tensor of strain. Strain compatibility equations. Hooke's law - constitutive equations of elasticity. Lame's equations. Beltrami-Michell equations. Analysis of plane state problems (plane stress, plane strain, disks). Fundamentals of thin plates.

8. Calculation of internal forces and displacements in plates.

9. Constitutive relations of plasticity.

10. Fundamentals of ultimate load-bearing capacity analysis of structures.

Teaching methods

Lecture - informative, monographic.

Tutorials - exercise method.

Bibliography

Basic

1. Gawęcki A., Mechanika materiałów i konstrukcji prętowych, (tom I+II), Wyd. PP, Poznań 1998.

2. Stanisławski S., Podstawy teorii sprężystości, Wyd. PP, Poznań 1963.

3. Rakowski J., Guminiak M., Teoria sprężystości i plastyczności. Reologia. Wyd. PP, Poznań 2018.

Additional

1. Nowacki W., Teoria sprężystości, PWN, Warszawa 1970,

2. Rymarz Cz., Mechanika ośrodków ciągłych, PWN, Warszawa 1993,

2. Ostrowska-Maciejewska J., Podstawy mechaniki ośrodków ciągłych, PWN, Warszawa 1982,

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

3. Skrzypek J.: Plastyczność i pełzanie, PWN, Warszawa 1986.

Breakdown of average student's workload

	Hours	ECTS
Total workload	80	3,0
Classes requiring direct contact with the teacher	36	1,5
Student's own work (literature studies, preparation for	44	1,5
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate